Discriminant Analysis of Metabolomics Data
By: Jessica • Essay • 305 Words • January 25, 2010 • 980 Views
Join now to read essay Discriminant Analysis of Metabolomics Data
1.1 Aims
Metabolomics is a post genomic technology that seeks to provide a comprehensive profile of all metabolites present in a biological sample, the aim of which is to provide information about the organism or tissue under investigation. Characteristics in the 1H NMR spectra can be used for classification and comparison of samples. The identification and use of such traits is known as metabolic fingerprinting. However, the samples often contain thousands of metabolites making the NMR spectra extremely complex and difficult to interpret.
Current methods for preprocessing 1H NMR metabolomics data (data reduction and shift correction) add intra-class variation and lead to a loss of interpretability. Popular methods for classification of metabolomics data include PCA-LDA and PLS-LDA, the results obtained, although providing good classification rate, are often difficult to interpret due to the inherent data transformation used. The aim of this project was to develop new analytical techniques with improved classification results and the ability to identify the metabolites responsible for the separation.
1.2 Methods
Standard methods for binning divide the selected spectral range into regions