EssaysForStudent.com - Free Essays, Term Papers & Book Notes
Search

Mars Landing and Probes

By:   •  Research Paper  •  1,636 Words  •  January 11, 2010  •  916 Views

Page 1 of 7

Join now to read essay Mars Landing and Probes

Mars (Greek: Ares) is the god of War. The planet probably got this name due to its red color; Mars is sometimes referred to as the Red Planet. (An interesting side note: the Roman god Mars was a god of agriculture before becoming associated with the Greek Ares; those in favor of colonizing and terraforming Mars may prefer this symbolism.) The name of the month March derives from Mars.

Mars has been known since prehistoric times. It is still a favorite of science fiction writers as the most favorable place in the Solar System (other than Earth!) for human habitation. But the famous "canals" "seen" by Lowell and others were, unfortunately, just as imaginary as Barsoomian princesses.

The first spacecraft to visit Mars was Mariner 4 in 1965. Several others followed including Mars 2, the first spacecraft to land on Mars and the two Viking landers in 1976 (left). Ending a long 20 year hiatus, Mars Pathfinder landed successfully on Mars on 1997 July 4 (right). In 2004 the Mars Expedition Rovers "Spirit" and "Opportunity" landed on Mars sending back geologic data and many pictures.

Mars' orbit is significantly elliptical. One result of this is a temperature variation of about 30 C at the subsolar point between aphelion and perihelion. This has a major influence on Mars' climate. While the average temperature on Mars is about 218 K (-55 C, -67 F), Martian surface temperatures range widely from as little as 140 K (-133 C, -207 F) at the winter pole to almost 300 K (27 C, 80 F) on the day side during summer.

Though Mars is much smaller than Earth, its surface area is about the same as the land surface area of Earth.

Except for Earth,

Mars has the most highly varied and interesting terrain of any of the terrestrial planets, some of it quite spectacular:

Olympus Mons: the largest mountain in the Solar System rising 24 km (78,000 ft.) above the surrounding plain. Its base is more than 500 km in diameter and is rimmed by a cliff 6 km (20,000 ft) high (right).

Tharsis: a huge bulge on the Martian surface that is about 4000 km across and 10 km high.

Valles Marineris: a system of canyons 4000 km long and from 2 to 7 km deep (top of page);

Hellas Planitia: an impact crater in the southern hemisphere over 6 km deep and 2000 km in diameter.

Much of the Martian surface is very old and cratered, but there are also much younger rift valleys, ridges, hills and plains.

The southern hemisphere of Mars is predominantly ancient cratered highlands (left) somewhat similar to the Moon. In contrast, most of the northern hemisphere consists of plains which are much younger, lower in elevation and have a much more complex history. An abrupt elevation change of several kilometers seems to occur at the boundary. The reasons for this global dichotomy and abrupt boundary are unknown (some speculate that they are due to a very large impact shortly after Mars' accretion). Mars Global Surveyor.has produced a nice 3D map of Mars that clearly shows these features.

The interior of Mars is known only by inference from data about the surface and the bulk statistics of the planet. The most likely scenario is a dense core about 1700 km in radius, a molten rocky mantle somewhat denser than the Earth's and a thin crust. Data from Mars Global Surveyor indicates that Mars' crust is about 80 km thick in the southern hemisphere but only about 35 km thick in the north. Mars' relatively low density compared to the other terrestrial planets indicates that its core probably contains a relatively large fraction of sulfur in addition to iron (iron and iron sulfide).

Like Mercury and the Moon, Mars appears to lack active plate tectonics at present; there is no evidence of recent horizontal motion of the surface such as the folded mountains so common on Earth. With no lateral plate motion, hot-spots under the crust stay in a fixed position relative to the surface. This, along with the lower surface gravity, may account for the Tharis bulge and its enormous volcanoes. There is no evidence of current volcanic activity, however.

There is very clear evidence of erosion in many places on Mars including large floods and small river systems (right). At some time in the past there was clearly some sort of fluid on the surface. Liquid water is the obvious fluid but other possibilities exist. There may have been large lakes or even oceans; the evidence for which was strengthened

by some very nice images of layered terrain taken by Mars Global Surveyor. But it seems that this occurred only briefly and very long ago; the age of the erosion channels

Download as (for upgraded members)  txt (9.2 Kb)   pdf (124.7 Kb)   docx (14.1 Kb)  
Continue for 6 more pages »