EssaysForStudent.com - Free Essays, Term Papers & Book Notes
Search

Global Positioning System (gps)

By:   •  Research Paper  •  1,035 Words  •  February 6, 2010  •  1,291 Views

Page 1 of 5

Join now to read essay Global Positioning System (gps)

The Global Positioning System. What is GPS? The global positioning system is a satellite-based navigation system, developed and operated by the U.S. Department of Defence, consisting of a network of 24 orbiting satellites that are eleven thousand nautical miles in space, at an inclination of 55 degrees and in six different orbital paths. The satellites are constantly moving, making two complete orbits around the Earth in just less than 24 hours. The GPS satellites are referred to as NAVSTAR satellites. GPS uses these 'man-made' stars as reference points to calculate positions accurate to a matter of metres. Advanced forms of GPS can make measurements to better than a centimetre. GPS now permits land, sea and airborne users to determine their three dimensional position anywhere in the world very precisely and accurately. The user segment consists of receivers, processors and antennas. The vast majority of applications of precision possible with GPS is primarily of scientific and military use, but it is worth noting that these days, GPS is finding its way into cars, boats, planes, construction equipment and a lot more. Principles of Operation of GPS The GPS satellites orbit the Earth twice a day, 11,000 miles above the Earth transmitting their precise position and elevation. In brief, the GPS receiver acquires the signal, then measures the interval between transmission and receipt of the signal to determine the distance between the receiver and the satellite. Once the receiver has calculated this data for at least three satellites, its location on the Earth's surface can be determined. This is the basis of triangulation, which works as follows: -Determining the exact distance to one satellite narrows down the receiver's position to some place on an imaginary sphere. -Knowing the exact distance to a second satellite narrows the position down to the intersection of two spheres or a circle of points. -Knowing the exact position of a third satellite narrows the possibilities down to two points of intersection. The exact position is usually known now because one of the points is usually not on the surface of the Earth. A fourth satellite position can be used to find the one single location without any doubt. (This will be discussed later). This is how position is calculated, but how is the distance measured from the receiver to the satellite? Basically, it is measured by timing how long it takes for a signal sent from the satellite to arrive at the receiver. Both the satellite and the receiver simultaneously generate the same pseudo random code. The time delay before both codes will synchronise, multiplied by the speed of light gives the distance. Diagrammatically, It should be explained that the pseudo random code is just a very complicated code that looks like random electrical noise. The reasons for the complexity are: -It helps make sure that the receiver doesn't accidentally sync up to some other signal. -It guarantees that the receiver doesn't accidentally pick up another satellite's signal as each satellite has its own unique pseudo random code. -The code makes it possible to use 'information theory' to 'amplify' the GPS signal. As well as the GPS signal containing a pseudo random code, every satellite also transmits almanac and ephemeris data. The almanac data is general information on the location and the health of each satellite in the constellation, which can be received from any satellite. Ephemeris data is the precise satellite positioning information that is used by the GPS receiver to compute its position. Each satellite transmits its own ephemeris data. It is of utmost importance that timing is extremely precise. Satellites have atomic clocks that can make precise time measurements, while available GPS receivers don't. To correct this, a fourth satellite distance measurement is made, providing perfect timing or atomic accuracy clock measurements. One consequence of this principle is that any decent GPS receiver

Download as (for upgraded members)  txt (6.5 Kb)   pdf (91.1 Kb)   docx (12 Kb)  
Continue for 4 more pages »