Earthquakes
By: Venidikt • Essay • 1,303 Words • April 21, 2010 • 1,027 Views
Earthquakes
Most naturally occurring earthquakes are related to the tectonic nature of the Earth. Such earthquakes are called tectonic earthquakes. The Earth's lithosphere is a patchwork of plates in slow but constant motion caused by the release to space of the heat in the Earth's mantle and core. The heat causes the rock in the Earth to flow on geological timescales, so that the plates move slowly but surely. Plate boundaries lock as the plates move past each other, creating frictional stress. When the frictional stress exceeds a critical value, called local strength, a sudden failure occurs. The boundary of tectonic plates along which failure occurs is called the fault plane. When the failure at the fault plane results in a violent displacement of the Earth's crust, energy is released as a combination of radiated elastic strain seismic waves, frictional heating of the fault surface, and cracking of the rock, thus causing an earthquake. This process of gradual build-up of strain and stress punctuated by occasional sudden earthquake failure is referred to as the Elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth or is converted into heat generated by friction. Therefore, earthquakes lower the Earth's available elastic potential energy and raise its temperature, though these changes are negligible compared to the conductive and convective flow of heat out from the Earth's deep interior.[1]
The majority of tectonic earthquakes originate at depths not exceeding tens of kilometers. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, Deep focus earthquakes may occur at much greater depths (up to seven hundred kilometers). These seismically active areas of subduction are known as Wadati-Benioff zones. These are earthquakes that occur at a depth at which the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.[2]
Earthquakes also often occur in volcanic regions and are caused there, both by tectonic faults and by the movement of magma in volcanoes. Such earthquakes can serve as an early warning of volcanic eruptions.
Sometimes a series of earthquakes occur in a sort of earthquake storm, where the earthquakes strike a fault in clusters, each triggered by the shaking or stress redistribution of the previous earthquakes. Similar to aftershocks but on adjacent segments of fault, these storms occur over the course of years, and with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th century, the half dozen large earthquakes in New Madrid in 1811-1812, and has been inferred for older anomalous clusters of large earthquakes in the Middle East and in the Mojave Desert.
Small earthquakes occur nearly constantly around the world in places like California and Alaska in the U.S., as well as in Chile, Peru, Indonesia, Iran, the Azores in Portugal, New Zealand, Greece and Japan.[3] Large earthquakes occur less frequently, the relationship being exponential; for example, roughly ten times as many earthquakes larger than magnitude 4 occur in a particular time period than earthquakes larger than magnitude 5. In the (low seismicity) United Kingdom, for example, it has been calculated that the average recurrences are:
an earthquake of 3.7 - 4.6 every year
an earthquake of 4.7 - 5.5 every 10 years
an earthquake of 5.6 or larger every 100 years.
The number of seismic stations has increased from about 350 in 1931 to many thousands today. As a result, many more earthquakes are reported than in the past because of the vast improvement in instrumentation (not because the number of earthquakes has increased). The USGS estimates that, since 1900, there have been an average of 18 major earthquakes (magnitude 7.0-7.9) and one great earthquake (magnitude 8.0 or greater) per year, and that this average has been relatively stable.[4] In fact, in recent years, the number of major earthquakes per year has actually decreased, although this is likely a statistical fluctuation. More detailed statistics on the size and frequency of earthquakes is available from the USGS.[5]
Most of the world's earthquakes (90%, and 81% of the largest) take place in the 40,000-km-long, horseshoe-shaped zone called the circum-Pacific seismic belt, also known as the Pacific Ring of Fire,