EssaysForStudent.com - Free Essays, Term Papers & Book Notes
Search

Gfhghh

By:   •  Coursework  •  2,261 Words  •  August 3, 2014  •  1,004 Views

Page 1 of 10

Gfhghh

6. the arc length formulaL=∫cd(1+(dx/dy)2)dy=∫ab(1+(dy/dx)2)dy

1+(dx/dy)2=1+((y−1)/(2sqrt(y)))2=1+(y−1)2/(4y)=(y2−2y+1+4y)/(4y)=(y+1)2/(4y)

so(1+(dx/dy)2)=((y+1)2/(4y))=(y+1)/2sqrty

L=∫916(y+1)/2sqrt(y)dy=(y+1)/(2sqrty)916=17/8−10/6=0.458

7.f(x)=2x^(3/2)=>f'(x)=3x^(1/2)

L(x)=∫ax(1+(f'(t))2)dt=∫36432(1+9t)dt.Now we can use the substitution rule. Set

u = 1 + 9t and we have∫udu/9=2u(3/2)/27=2(1+9t)(3/2)/27

L(x)=2(1+9t)(3/2)/2736432=17964.83−434=17530.83.

8.y=5cos x where 0<=x<=2pi

L=∫ab(1+(dy/dx)2)dy so dy/dx=-5sin x so L=∫02pi(1+25(sinx)2)dx

9. x=1/3(y^2+2)^3/2 where 2<=y<=3

We use the formula S=∫y1y22piydswhere ds=(1+(dx/dy)2)dy.

ds=sqrt (1+(y(y^2+2)^1/2)^2)=sqrt(1+y^2(y^2+2))=sqrt((y^2+1)^2)=y^2+1

S=∫232piy(y2+1)dy=pi/2(y2+1)223=50pi−12.5pi=37.5pi=117.75.

10.dS = 2pi*y*√[1 + (y')²] dx 

y = 1/4 x² - 1/2 lnx = 1/4*(x² - 2 lnx) 

y' = 1/4*(2x - 2 * 1/x) = 1/2 * (x - 1/x) 

1 + (y')² = 1 + 1/4*(x - 1/x)² = 4/4 + 1/4*(x² - 2 + 1/x²) = 

= 1/4*(4 + x² - 2 +1/x²) = 1/4*(x² + 2 +1/x²) = 1/4*(x + 1/x)² 

So dS = 2pi*y*√[1/4*(x + 1/x)²] dx = 

= 2pi*1/4*(x² - 2 lnx)*1/2*(x + 1/x) dx = 

= pi/4 *(x² - 2 lnx)*(x + 1/x) dx 

S = pi/4*[2, 5] ∫ (x² - 2 lnx)*(x + 1/x) dx =pi/4(-(ln x)^2-2*((x^2 lnx/2)-x^2/4)+x^4/4+x^2/2)[2,5]=(pi/4)*144.13=113.143

3.b) ∫ 3e^(1/x) dx =3( x*e^(1/x) - Ei(1/x) + C )

Thus: 

∫ e^(1/x) dx (from 1 to 2) 
= 3(x*e^(1/x) - Ei(1/x) )(evaluated from 1 to 2) 
= 3[2*e^(1/2) - Ei(1/2)] - [e - Ei(1)] 
≈ 6.060174 

Error=approximation-true value so Error(T4)=|T4- 6.060174|=|6.095679- 6.060174| = approx 0.035505

Error(M4)=|M4-6.060174|=|6.042620-6.060174| = approx 0.017554

c)f(x)=3e^(1/x) , f'(x)=-3e^(1/x)/x^2, f''(x)=(6x+3)e^(1/x)/x^4 which equals 0 for x=-1/2.The maximum value of |f'(x)| where x=-1/2 is  1.624.

ERROR BOUNDS: Suppose |f ′′ (x)| ≤ K for a ≤ x ≤ b. If ET and EM are the errors in the

Trapezoidal and Midpoint Rules, then

|ET | ≤ K(b − a)3 /(12n^2) and |EM | ≤ K(b − a)3 /(24n^2)

In our case a=1,b=2 and K=1.62 so |ET|<=1.62(2-1)^3/(12n^2) so 1.62/(12n^2)<0.0001 so n>36.78 so it's enough to take n=37

|EM|<=1.62/(24n^2) so  1.62/(24n^2)<0.0001 so n>25.98 so it's enough to take n=26

11.Let: 
s be the length of the side of the triangle, 
h be the vertical depth of the trough, 
r be the density of the liquid, 
g be the acceleration due to gravity, 
x be the distance of an infinitesimally thin horizontal slice of liquid from the base of the trough, 
w be the width of the horizontal slice, 
F be the hydrostatic force. 

From the geometry of the equilateral triangle: 
x / w = h / s = sqrt(3) / 2 
h = s sqrt(3) / 2 
w = 2x / sqrt(3) 

dF = rgw(h - x) dx 
F = rg int(0, h) [ w(h - x) ] dx 
= rg int(0, h) [ xs - 2x^2 / sqrt(3) ] dx 
= rg [ sx^2 / 2 - 2x^3 / 3 sqrt(3) ](0, h) 
= rg [ sh^2 / 2 - 2h^3 / 3 sqrt(3) ] 
= rg [ 3s^3 / 8 - s^3 / 4 ] 
= rgs^3(3 / 8 - 1 / 4) 
= rgs^3 / 8 

F = 810 * 9.81 * 6^2 
= 2.86 * 10^5 N.

12.The way to calculate hydrostatic pressure is rho*g*h 

where rho is the density of the liquid = 1000kg/m^3 for water 
g is the acceleration due to gravity, = 9.81 m/sec^2 
h is the depth = 0.7m for (a), and 0.85m for (b), using the average depth of a vertical side 

l=length of a side of the cub

Force is pressure * area, so force is calculated as rho*g*h*area. So the answers are calculated as - 

a) F=PA=pgh*l^2=1000*9.81*0.7*0.3^2 = 618.03N 

b) 1000*9.81*0.85*0.3^2 = 750.465N 

13.I don't have the drawing and the data but suppose its like this one.

Download as (for upgraded members)  txt (12.5 Kb)   pdf (596.9 Kb)   docx (72.4 Kb)  
Continue for 9 more pages »