EssaysForStudent.com - Free Essays, Term Papers & Book Notes
Search

Sickle Cell Anemia

By:   •  Research Paper  •  1,361 Words  •  May 18, 2010  •  1,002 Views

Page 1 of 6

Sickle Cell Anemia

Sickle Cell anemia is a group of inherited red blood cell disorders, or a collection of recessive genetic disorders characterized by a hemoglobin variant called Hb S. Normal red blood cells are round like doughnuts, and they move through small blood tubes in the body to deliver oxygen. Sickle red blood cells become hard, sticky and shaped like sickles used to cut wheat. When these hard and pointed red cells go through the small blood tube, they clog the flow and break apart. This can cause pain, damage and a low blood count, or anemia. There is a substance in the red cell called hemoglobin that carries oxygen inside the cell. One little change in this substance causes the hemoglobin to form long hard rods in the red cell when it gives away oxygen. These rigid rods change the red cell into a sickle shape.

For such a minuscule mistake, the consequences are tragic. At the time of conception, a person receives one set of genes from the mother and a corresponding set of genes from the father. Sickle cell disease is a condition that is determined by a single pair of genes. The genes are those which control the production of hemoglobin in red cells. It is a member of the globin gene family, a group of genes involved in oxygen transport, and hemoglobin binds oxygen in the lungs and delivers it to the other tissues. Most people have two normal genes for hemoglobin. Some people carry one normal gene and one gene for sickle hemoglobin. This is called "sickle cell trait".

These people are normal in almost all respects. Problems from having a single sickle cell gene develop only under very unusual conditions. "People who inherit two genes for sickle hemoglobin (one from each parent) have sickle cell disease."says (POA) It is believed that individuals with African and Mediterranean ancestry have unusually high frequency of sickle cell trait due to the reduced mortality from malaria infections when compared with individuals who do not carry the hemoglobin variant

Red blood cells carrying the abnormal gene (hemoglobin S) travel normally through circulation until they are deoxygenated. When this happens the hemoglobin S molecules form long, rigid rods, causing the normally donut-shaped cells to stiffen and distort into a sickle shape.

These sickle cells have a very hard time moving through the small capillaries. As blood flow slows, the cells lining the vessel walls become sticky, attracting the sickle cells like flypaper and causing massive circulatory gridlock. Although these changes are partly reversible through the normal process of reoxygenation, by the time this reversal takes place much damage has already been done. The spleen, acting as a policeman, traps and destroys many of the abnormal sickle cells, resulting in rapid turnover of red blood cells and chronic anemia.

"This anemia results in fatigue and a number of the following problems; pain episodes, strokes, susceptibility to bacterial infections, particularly in children, leg ulcers, bone damage, yellow eyes or jaundice, early gallstones, lung blockage, increased infections, kidney damage and loss of body water in urine, painful erections in men, blood blockage in the spleen or liver, eye damage, low red blood cell counts (anemia), and delayed growth."acording to (SCTCSC)

Each year in the US, an average of 75,000 hospitalizations are due to sickle cell disease, costing approximately $475 million. Sickle cell disease is also associated with significant mortality. Among children, the primary causes of mortality are bacterial infections and stroke. In adults, it is more difficult to attribute specific causes to mortality, but it appears that individuals with more indicative disease are at risk for early mortality.

Tremendous advances in detection and treatment mean that most patients now survive to adulthood, many into their 50s and 60s and beyond. Some patients lead fairly normal lives, attending school and work with only occasional pain episodes and only slowly progressive organ damage. Treatments, such as penicillin prophylaxis, have been developed that can significantly reduce the rate of disease and mortality of sickle cell disease patients. For this reason, several US organizations have supported screening all newborns for sickle cell disease. As a result, almost every US state and territory now screen their newborn infants for this blood disorder. Several test methods are available to detect sickle cell disease. Most tests examine an individual's hemoglobin, although DNA testing is also now available. As a result of newborn screening, better medical care, parent education and penicillin prophylaxis, the mortality rate due to sickle cell is decreasing

There are several test methods available. These tests detect the beta globin gene product and are performed on blood samples, including cord blood and dried blood spots, which are collected at any time

Download as (for upgraded members)  txt (8.8 Kb)   pdf (123.6 Kb)   docx (13.8 Kb)  
Continue for 5 more pages »